Abstractions for Fault—Tolerant Distributed
System Verification*

Lee Pike!, Jeffrey Maddalon', Paul Miner!, and Alfons Geser?

! Formal Methods Group

NASA Langley Research Center

M/S 130, Hampton, VA 23681-2199

{lee.s.pike, j.m.maddalon, paul.s.miner}@nasa.gov
National Institute of Aerospace

144 Research Drive, Hampton, VA 23666
geser@nianet.org

Summary. Four kinds of abstraction for the design and analysis of fault—tolerant
distributed systems are discussed. These abstractions concern system messages,
faults, fault—-masking voting, and communication. The abstractions are formalized
in higher—order logic, and are intended to facilitate specifying and verifying such
systems in higher—order theorem—provers.

1 Introduction

In recent years, we have seen tremendous growth in the development of embedded
computer systems with critical safety requirements [10, 12], and there is no expec-
tation that this trend will abate. For instance, steer—by—wire systems are currently
being pursued [11]. To withstand faulty behavior, safety—critical systems have tra-
ditionally employed analog backup systems in case the digital system fails; however,
many new “by—wire” systems have no analog backup. Instead, they rely on inte-
grated digital fault—tolerance.

Due to their complexity and safety—critical uses, fault—tolerant embedded sys-
tems require the greatest assurance of design correctness. One means by which a
design can be shown correct is formal methods. Formal methods are especially war-
ranted if we recall that published and peer-reviewed informal proofs—of—correctness
of seemingly simple fault—tolerance algorithms have been incorrect [16]. Here, we
focus on formal methods involving higher—order theorem—provers.

Although many fault—tolerant distributed systems and algorithms have been
specified and verified, the abstractions used have often been ad—hoc and system—
specific. Developing appropriate abstractions is often the most difficult and time—
consuming part of formal methods [25]. We present these abstractions to systematize
and facilitate the practice of abstraction.

*Accepted at Theorem-Proving in Higher-Order Logics (TPHOLs), 2004.

2 Lee Pike et al.

The abstractions presented are in the spirit of abstractions of digital hardware
developed by Thomas Melham [19, 18]. They are intended to make specifications and
their proofs of correctness less tedious [14], less error—prone, and more consistent.
Although the abstractions we describe are quite general, we intend for them to be
accessible to the working verification engineer.

These abstractions are the outcome of the on—going project “Scalable Processor—
Independent Design for Electromagnetic Resilience” (SPIDER) at NASA’s Langley
Research Center and the National Institute of Aerospace. One of the project goals is
to specify and verify the Reliable Optical Bus (ROBUS), a state-of-the—art fault—
tolerant communications bus [27, 20]. SPIDER is the basis of an FAA study exploring
the use of formal methods, especially theorem—proving, in avionics certification.
The abstractions have proved useful in this project, and in fact are the basis of a
generalized fault—tolerant library of PVS theories mentioned in Sect. 8.

The structure of our paper is as follows. We discuss fault—tolerant distributed
systems in Sect. 2. Section 3 gives an overview of the four abstractions presented in
this paper. Sections 4 through 7 explain these abstractions. Each section presents an
abstraction, and then the abstraction is formalized in higher—order logic. We provide
some concluding remarks and point toward future work in the final section.

2 Fault—Tolerant Distributed Systems

Introductory material on the foundations of distributed systems and algorithms can
be found in Lynch [17]. Some examples of systems that have fault—tolerant dis-
tributed implementations are databases, operating systems, communication busses,
file systems, and server groups [3, 27, 2].

A distributed system is modeled as a graph with directed edges. Vertices are
called processes. Directed edges are called communication channels (or simply chan-
nels). If channel ¢ points from process p to process p’, then p can send messages over
c to p’, and p’ can receive messages over ¢ from p. In this context, p is the sending
process (or sender) and p’ is the receiving process (or receiver). Channels may point
from a process to itself. In addition to sending and receiving messages, processes
may perform local computation.

A fault-tolerant system is one that continues to provide the required functional-
ity in the presense of faults. One way to implement a fault—tolerant system is to use
a distributed collection of processes such that a fault that affects one process will
not adversely affect the whole system’s functionality. This type of system is referred
to as a fault—tolerant distributed system.

3 Four Kinds of Abstraction

We introduce four fundamental abstractions in the domain of fault—tolerant dis-
tributed systems. Message Abstractions address the kinds of messages sent and re-
ceived. We consider abstractions both of the content of messages and of the faultiness
of messages. Fault Abstractions address the kinds of faults possible as well as their
affects in the system. Fault—Masking Abstractions address the kinds of local compu-
tations processes make to mask faults. Finally, Communication Abstractions address

Abstractions for Fault—Tolerant Distributed System Verification 3

the kinds of messages communicated and the properties required for communication
to succeed in the presence of faults.

Our formal expressions are stated in the language of higher—order functions:
variables can range over functions, and functions can take other functions as argu-
ments. Furthermore, we use uninterpreted functions (i.e., functions with no defining
body) that act as constants when applied to their arguments. Curried functions and
lambda abstraction are also used. For a brief overview of higher—order logic from
a practitioner’s perspective, see, for example, Melham [19] or the PVS language
reference [9]. A small datatype, fully explained in Sect. 4, is also used.

The abstractions have all been formalized in the Prototype Verification System
(PVS), a popular interactive industrial-strength theorem proving system [21, 8].
They are available at [23].

4 Abstracting Messages

4.1 Abstraction

Messages communicated in a distributed system are abstracted according to their
correctness. We distinguish between benign messages and valid messages. The former
are messages that a non—faulty receiving process recognizes as incorrect; the latter
are messages that a non—faulty receiving process does not recognize as incorrect.
Note that a valid message may be incorrect: the receiving process just does not
detect that the message is incorrect.

Benign messages abstract various sorts of misbehavior. A message that is suffi-
ciently garbled during transmission may be caught by an error—checking code [7] and
deemed benign. Benign messages also abstract the absence of a message: a receiver
expecting a message but detecting the absence of one takes this to be the ‘recep-
tion’ of a benign message. In a synchronized systems with global communication
schedules, they abstract messages sent and received at unscheduled times.

4.2 Formalization

Let the set MSG be a set of messages of a given type. We define a datatype over ele-
ments of MSG. The set of all possible datatype elements is ABSTRACT-MSG[MSG].

The datatype has two constructors, valid-msg and benign_msg. The former
takes an element m € MSG and creates the datatype element valid-msg[m]. The
constructor also has an associated extractor value such that

value(valid-msg[m]) = m .

The other constructor, benign_msg, is a constant datatype element; it is a con-
structor with no arguments. All benign messages are abstracted as a single mes-
sage; thus, the abstracted incorrect message cannot be recovered. Finally, we define
two recognizers, valid_-msg? and benign_msg? with the following definitions. Let
a € ABSTRACT_-MSG[MSG].

valid-msg?(a) LIm.me MSG Na = valid-msg[m] ,

4 Lee Pike et al.
and
benign-msg?(a) o= benign_msg .

We summarize this datatype in Fig. 1. Let m € MSG.

Constructors ‘ Extractors ‘ Recognizers

valid-msg[m)] value valid-msg?
benign_msg none benign_msg?

Fig. 1. Abstract Messages Datatype

5 Abstracting Faults

There are two closely related abstractions with respect to faults. The first abstrac-
tion, error types, partitions the possible locations of faults. The second abstraction,
fault types, partitions faults according to the manifestation of the errors caused by
the faults.®

5.1 Abstracting Error Types

Picking the right level of abstraction and the right components to which faults should
be attributed is a modeling issue that has been handled in many different ways. We
think this is a particularly good example of the extent to which modeling choices
can affect specification and proof efficacy.

Both processes and channels can suffer faults, and there are fault-tolerant algo-
rithms tolerating faults of each kind [17]. In actual systems, both may be faulty, but
reasoning about process and channel faults together is tedious. Fortunately, such
reasoning is redundant — channel faults can be abstracted as process faults. A chan-
nel between a sending process and a receiving process can be abstracted as being
an extension either of the sender or of the receiver. For instance, a lossy channel
abstracted as an extension of the sender is modeled as a process failing to send
messages.

Even if we abstract all faults to ones affecting processes and not channels, we
are left with the task of abstracting how the functionality of a process — sending,
receiving, or computing — is degraded. One possibility is to consider a process as an
indivisible unit so that a fault affecting one of its functions is abstracted as affecting
its other functions, too. Another possibility is to suppose all processes perform local
computation correctly regardless of their faultiness, such as in the models used
in [26, 22]. Finally, models implicit in [5, 16] abstract process faults as being ones
affecting only a process’ ability to send messages. So even if a fault affects a process’
ability to receive messages or compute, the fault is abstractly propagated to a fault
affecting the process’ ability to send messages.

3An error is “that part of the system state which is liable to lead to subsequent
failure,” while a fault is “the adjudged or hypothesized cause of an error” [15].

Abstractions for Fault—Tolerant Distributed System Verification 5

All three models above are conservative, i.e., the abstraction of a fault is at least
as severe as the fault. This is certainly true of the first model in which the whole
process is considered to be degraded by any fault, and it is true for the second
model, too. Even though it is assumed that a process can always compute correctly,
its computed values are inconsequential if it can neither receive nor send correct
values. As for the third model, the same reasoning applies — even if a faulty process
can receive messages and compute correctly, it cannot send correct messages to other
processes.

The model we choose is one in which all faults are abstracted to be ones de-
grading send functionality, and in which channels are abstracted as belonging to the
sending process. There are two principal advantages to this model. First, the model
allows us to disregard faults when reasoning about the ability of processes to receive
and compute messages. Second, whether a message is successfully communicated is
determined solely by a process’ send functionality.

5.2 Abstracting Fault Types

Faults result from innumerable occurrences including, physical damage, electromag-
netic interference, and “slightly-out—of-spec” communication [4]. We collect these
fault occurrences into fault types according to their effects in the system.

We adopt the hybrid fault model of Thambidurai and Park [28]. A process is
called benign, or manifest, if it sends only benign messages, as described in Sect. 4.
A process is called symmetric if it sends every receiver the same message, but these
messages may be incorrect. A process is called asymmetric, or Byzantine [13], if it
sends different messages to different receivers. All non-faulty processes are also said
to be good.

Other fault models exist that provide more or less detail than the hybrid fault
model above. The least detailed fault model is to assume the worst case scenario,
that all faults are asymmetric. The fault model developed by Azadmanesh and
Kieckhafer [1] is an example of a more refined model. All such fault models are
consistent with the other abstractions in this paper.

5.3 Formalization

We begin by formalizing fault types. Let S be the set of sending processes. Let
asym, sym, benign, and good be constants representing the fault types asymmetric,
symmetric, benign, and good, respectively.

As mentioned, we abstract all faults to ones that affect a process’ ability to send
messages. To model this formally, we construct a function modeling a process sending
a message to a receiver. The range of the function is the set of abstract messages,
elements of the datatype defined in Sect. 4. As explained, MSG is a set of messages,
and ABSTRACT-MSG[MSG] is the set of datatype elements parameterized by
MSG. Let s € S and » € R be a sending and receiving process respectively. Let
msg-map : S — MSG be a function from senders to the message they intend to
send, and let sender_status be a function mapping senders to their fault partition.
The function outputs the abstract message received by r from s.

6 Lee Pike et al.

send(msg-map, sender_status, s,) 4

valid_msglmsg-map(s)] : sender_status(s) = good
benign-msg : sender_status(s) = ben
sym-msg(msg-map(s),s) : sender_status(s) = sym
asym_msg(msg_-map(s),s,r) : sender_status(s) = asym .

If s is good, then r receives a valid abstract message from s. If s is benign, then r
receives a benign message. In the last two cases — in which s suffers a symmetric or
asymmetric fault — uninterpreted functions are returned. Applied to their arguments,
sym_msg and asym_msg are unknown abstract message constants. The function
asym_msg models a process suffering an asymmetric fault by taking the receiver as
an argument: for receivers r and r’, asym_msg(msg-map(s), s,r) is not necessarily
equal to asym_msg(msg-map(s),s,r’). On the other hand, the function sym_msg
does not take a receiver as an argument, so all receivers receive the same abstract
message from a particular sender.

6 Abstracting Fault—Masking

6.1 Abstraction

Some of the information a process receives in a distributed system may be incorrect
due to the existence of faults as described in Sect. 5. A process must have a means
to mask incorrect information generated by faulty processes. Two of the most well-
known are (variants of) a majority vote or a middle—value selection, as defined in
the following paragraph. These functions are similar enough to abstract them as a
single fault-masking function.

A majority vote returns the majority value of some multiset (i.e., a set in which
repetition of values is allowed), and a default value if no majority exists. A middle—
value selection takes the middle value of a linearly—ordered multiset, if the cardinality
of the multiset is odd. If the cardinality is an even integer n, then the natural choices
are to compute one of (1) the value at index |n/2], (2) the value at index [n/2],
or (3) the average of the two values from (1) and (2). Of course, these options may
yield different values; in fact, (3) may yield a value not present in the multiset.

For example, for the multiset {1,1,2,2,2,2}, the majority value is 2, and the
middle—value selection is also 2 for any of the three ways to compute the middle—
value selection. Both the majority vote and the middle—value selection yield the
same value for the above multiset. For any multiset that can be linearly—ordered, if
a majority value exists, then the majority value is equal to the middle-value selection
(for any of the three ways to compute it mentioned above).

The benefit of this abstraction is that we can define a single fault—masking
function (we call it a fault-masking vote) that can be implemented as either a
majority vote or a middle—value selection (provided the data over which the function
is applied is linearly—ordered).

This allows us to model what are usually considered to be quite distinct fault—
tolerant distributed algorithms uniformly. Concretely, this abstraction, coupled with
the other abstractions described in this paper, allow certain clock synchronization
algorithms (which usually depend on a middle-value selection) and algorithms in the
spirit of an Oral Messages algorithm [13, 16] (which usually depend on a majority
vote) to share the same underlying models.

Abstractions for Fault—Tolerant Distributed System Verification 7
6.2 Formalization

The formalization we describe models a majority vote and a middle—value selec-
tion over a multiset. A small lemma stating their equivalence follows. Definitions of
standard and minor functions are omitted.

Based on the NASA Langley Research Center PVS Bags Library [6], a multiset
is formalized as a function from values to the natural numbers that determines how
many times a value appears in the multiset (values not present are mapped to 0).
Thus, let V be a nonempty finite set of values®, and let ms : V — N be a multiset.

To define a majority vote, we define the cardinality of a multiset ms to be the
summation of value—instances in it:

|ms| 4 Z ms(v) .

veV

The function maj_set takes a multiset ms and returns the set of majority values
in it.
maj_set(ms) « {v|2xms(v) >|ms|} .
This set is empty if no majority value exists, or it is a singleton set. Thus, we define
majority to be a function returning the special constant no_majority if no majority
value exists and the single majority value otherwise.

. df [no-magjority : majority?(ms) =0
majority(ms) = { e(maj_set(ms)) : otherwise .

The function € is the choice operator that takes a set and returns an arbitrary value
in the set if the set is nonempty. Otherwise, an arbitrary value of the same type is
returned [19].

Now we formalize a middle—value selection. Let V' have the linear order < defined
on it. The function mid_val_set takes a multiset and returns the set of values at index
[n/2] when the values are ordered from least to greatest (we arbitrarily choose this
implementation). The set is always a singleton set.

mid_val_set(ms) 4

{v 2 x |lower_filter(ms,v)| > |ms| A}

2 X |upper_filter(ms,v)| > |ms|
The function lower_filter filters out all of the values of ms that are less than or
equal to v and upper_filter filters out the values greater than or equal to v. The
function lower_filter is defined as follows:

N
lower_filter(ms,v) i { ms(l())) z)tzeiwise
Similarly,
) at . [ms(t) : v=i
upper_filter(ms,v) = Ai. 0 ¢ otherwise .

41f V is finite, then multisets are finite. Fault-masking votes can only be taken
over finite multisets.

8 Lee Pike et al.

The relation middle_value?(ms) is guaranteed to be a singleton set, so using the
function € mentioned above, we can define middle_value to return the middle value
of a multiset:

middle_value(ms) & e(mid_val_set(ms)) .

The following theorem results.

Theorem 1 (Middle Value is Majority) majority(ms) # no_majority implies
middle_value(ms) = majority(ms).

7 Abstracting Communication

We identify two abstractions with respect to communication. First, we abstract the
kinds of data communicated. Second, we identify the fundamental conditions that
must hold for communication to succeed.

7.1 Abstracting Kinds of Communication

Some kind of information can be modelled by a real valued, uniformly continuous
function of time. Intuitively, a function is uniformly continuous if small changes
in its argument produce small changes in its result; see e.g., Rosenlicht [24]. For
example, the values of analog clocks and of thermometers vary with time, and the
rate of change is bounded. In a distributed system, a process may sample such a
function, i.e., determine a digital approximation of the function’s value at a given
moment. Because communication is not instantaneous, the sample requested and
the one received may differ. We therefore call such functions inezact functions and
the communication of their values inexact communication. Other functions, such as
an array sorting algorithm, do not depend on time. We call these ezact functions
and communication involving them ezact communication.

7.2 Abstracting Communication Conditions

Communication in a distributed system is successful if validity and agreement are
guaranteed to hold. For exact communication, their general forms are:

Ezact Validity: A good receiver’s fault—masking vote is equal to the message good
processes send.
Ezact Agreement: All good processes have equal fault—masking votes.

For inexact communication we have similar conditions:

Inezxact Validity: A good receiver’s fault-masking vote is bounded above and below
by the messages good processes send, up to a small error margin.

Inexact Agreement: All good processes differ in their fault—masking votes by at most
a small margin of error.

Abstractions for Fault—Tolerant Distributed System Verification 9

A validity property can thus be understood as an agreement between a sender and
a receiver, whereas an agreement property is an agreement between the receivers.
For lack of space, we limit our presentation to guaranteeing validity. Agreement is
treated similarly, and complete PVS formalizations and proofs for both are located
at [23].

We distinguish between a functional model and a relational model of communica-
tion. In the former, communication is modeled computationally (e.g., using functions
like send from Sect. 5). In the latter, conditions on communication are stated such
that if they hold, communication succeeds. This section presents these conditions.

We specifically present conditions that guarantee validity holds after a single
broadcast communication round in which each process in a set sends messages to
each process in a set of receivers (a degenerate case is when these are singleton sets
modeling point—to—point communication between a single sender and receiver). A
functional model of a specific communication protocol can be shown to satisfy these
conditions through step—wise refinement.

First we show that a single-round exact communication satisfies validity, pro-
vided that three conditions hold: Majority Good, Exact Message Error, and Message
Agreement. The three conditions state, respectively, that the majority of the values
over which a vote is taken come from good senders; that the message received is the
message sent; and that every sender sends the same message. We define the eligible
senders of a receiver to be the set of senders it believes to be good. This is the set
of senders that are admitted to the vote by a receiver; the others are ignored.

For single-round inexact communication, we have validity if two conditions hold:
Majority Good and Inexact Message Error. The Inexact Message Error condition
specifies the variance allowed between a sampled function before and after commu-
nication. For inexact communication, we must allow for a small variance to occur.
Let f be a time—dependent function. Suppose a process sends a request for f to be
sampled at time ¢t. However, the function f might be sampled a little sooner or later
than ¢ given the variable delay in communication; let n be the time at which f is
actually sampled. The condition states that nf(n) is no less than f(t) — e and no
greater than f(¢)+eu, where €1 and £, are constants. This is represented graphically
in Fig. 2.

range of n

Fig. 2. The Message Error Condition for Inexact Communication

Clock synchronization is an important case of inexact communication. A clock
is formalized as a function from real time to clock time. Clocks distributed in the

10 Lee Pike et al.

system need to be synchronized in order to avoid drifting too far apart. As the first
step in the synchronization protocol, processes sample one another’s clocks. The
Inexact Message Error condition abstracts the nominal time each process samples
the others’ clocks (the time ¢ in the example above) and the variation caused by
clocks that have already drifted slightly from each other (the £; and €, constants in
the example above).

7.3 Formalization for Exact Communication

First we present the model of a round of exact communication. For a single
round of communication, let S be the set of senders sending in that round. Let
good_senders C S be a subset of senders that are good. This set can change as
processes become faulty and are repaired, so we treat it as a parameter rather than
a constant. For an arbitrary receiver,® let eligible_senders C S be the set of senders
trusted by the receiver. Then the condition Majority Good is defined

majority_good(good_senders, eligible_senders) &
2 x |good_senders| > |eligible_senders| A

good_senders C eligible_senders .

This stipulates that a majority of the elements in eligible_senders are elements in
good_senders.

Next we describe the values sent and received. Let M SG be the range of the
function sampled — these are the values to communicate. The function ideal : S —
MSG is some function mapping senders to the message they send, thereby freeing
us from representing the particular function sampled. Similarly, actual : S — MSG
maps senders to the message a fixed receiver actually gets from that sender. For
exact communication, we require that what is sent is what is received:

. df
exact_message_error(good_senders,ideal, actual) =

Vs.s € good_senders = ideal(s) = actual(s) .

Message Agreement states that the message content sent by any two senders is the
same.

message_agreement(good_senders, ideal) &

Vs1,82. 81 € good_senders A s € good_senders = ideal(s1) = ideal(s2) .

Before stating the validity result, we must take care of a technical detail with
respect to forming the multiset of messages over which a receiver takes a fault—
masking vote. For an arbitrary receiver, let the function make_bag take as arguments
a nonempty eligible_senders and a function mapping senders to the message the
receiver gets. It returns a multiset of received values from senders in eligible_senders.

make_bag(eligible_senders, actual) &

M. |{s| s € eligible_senders A actual(s) = v} | .

5The receiver can be any receiver, good or faulty. The abstractions described in
Sect. 5 allow us to ignore the fault status of receivers in formal analysis.

Abstractions for Fault—Tolerant Distributed System Verification 11

For exact messages, validity is the proposition that the message any good sender
sends is the same as the message determined by a fault—masking vote. This propo-
sition is defined as:

exact_validity(eligible_senders, good_senders, ideal, actual) &

Vs.s € good_senders —>

ideal(s) = majority(make_bag(eligible_senders, actual)) .

We use majority for the fault—masking vote, but middle—value selection is acceptable
given Thm. 1. Using this proposition the Exact Validity Theorem reads:

Theorem 2 (Exact Validity)
majority_good(good_senders, eligible_senders) A
exact_message_error(good_senders,ideal, actual)) N\
message_agreement(good_senders, ideal)

implies that
exact_validity(eligible_senders, good_senders, ideal, actual).

7.4 Formalization for Inexact Communication

Next we present the model of a round of inexact communication. The Majority Good
condition here is the same as the one for exact communication. We now assume that
the elements of M SG have at least the structure of an additive group linearly ordered
by <. Inexact Message Error is defined as the conjunction of two conditions, Lower
Message Error and Upper Message Error. These two conditions specify, respectively,
the maximal negative and positive error that may be introduced by sampling from
a good sending process.

) df
lower_message_error(good_senders, ideal, actual) =

Vs. s € good_senders = ideal(s) — &1 = actual(s) ;

upper_message_error(good_senders, ideal, actual) &

Vs. s € good_senders = actual(s) = ideal(s) + €y ;
inexact_message_error(good_senders, ideal, actual) &
lower_message_error(good_senders, ideal, actual) N

upper_message_error(good_senders, ideal, actual) .

For inexact communication, validity is the proposition that for a fixed receiver,
the sample determined by a fault—masking vote is bounded both above and below
by the sampled values received from good senders, modulo error values €; and &y.
We express this in terms of a middle—value selection.

12 Lee Pike et al.

inexact_validity(eligible_senders, good_senders, ideal, actual) &

ds1.s1 € good_senders N\
ideal(s1) — e1 2 middle_value(make_bag(eligible_senders, actual)) A
ds2. 82 € good_senders N\

middle_value(make_bag(eligible_senders, actual)) < ideal(s2) + €y .

The Inexact Validity Theorem then reads:

Theorem 3 (Inexact Validity)
majority_good(good_senders, eligible_senders) A
inexact_message_error(good_senders, ideal, actual)

implies that
inezact_validity(eligible_senders, good_senders, ideal, actual).

8 Conclusion

This paper presents, in the language of higher—order logic, four kinds of abstrac-
tions for fault—tolerant distributed systems. These abstractions pertain to messages,
faults, fault-masking, and communication. We believe that they abstract a wide—
variety of fault—tolerant distributed systems.

Other useful abstractions have been developed, too. For example, Rushby
presents a set of conditions that guarantee that a time-triggered system implements
a synchronous system [26]. These conditions have been used in the specification and
verification of the Time—Triggered Architecture [22].

Our abstractions have proved their merit in an industrial-scale formal specifi-
cation and verification project. We are sure that similar projects will profit. We are
developing a distributed fault—tolerance library as part of the SPIDER project. It
is designed to be a generic library of PVS theories that may be used in the specifi-
cation and verification of a wide variety of fault—tolerant distributed systems. The
abstractions described in this paper form the backbone of the library.

Abstractions support not only the design, specification, and verification, but
also the documentation, comparison, and assessment of fault—tolerant distributed
systems. We must learn to teach hardware and software engineers, system architects,
certifiers, etc., the formalisms and the abstractions for these systems. We believe that
abstractions can significantly shorten the time needed to acquire an understanding
of the specifications as well as deepening that understanding. Being able to explain
formal specification and verification to non—experts in formal methods is the first
step to integrating formal proofs into the development life cycle.

Acknowledgments

We would like to thank Victor Carreno and Kristen Rozier for helpful comments.

Abstractions for Fault—Tolerant Distributed System Verification 13

References

10.

11.

12.
13.

14.

15.

16.

17.
18.

Mohammad H. Azadmanesh and Roger M. Kieckhafer. Exploiting omissive
faults in synchronous approximate agreement. IEEE Transactions on Comput-
ers, 49(10):1031-1042, 2000.

. Miguel Castro and Barbara Liskov. Practical Byzantine fault tolerance. In ACM

Proceedings: Operating Systems Design and Implementation (OSDI), pages 173~
186, February 1999.

Flaviu Cristian. Understanding fault-tolerant distributed systems. Communi-
cations of the ACM, 34(2), February 1991.

Kevin Driscoll, Brendan Hall, Hakan Sivencrona, and Phil Zumsteg. Byzantine
fault tolerance, from theory to reality. In G. Goos, J. Hartmanis, and J. van
Leeuwen, editors, Computer Safety, Reliability, and Security, Lecture Notes in
Computer Science, pages 235-248. The 22nd International Conference on Com-
puter Safety, Reliability and Security SAFECOMP, Springer-Verlag Heidelberg,
September 2003.

Alfons Geser and Paul Miner. A formal correctness proof of the SPIDER diag-
nosis protocol. Technical Report 2002-211736, NASA Langley Research Center,
Hampton, Virginia, August 2002. Technical Report contains the Track B pro-
ceedings from Theorem Proving in Higher Order Logics (TPHOLSSs).

NASA LaRC Formal Methods Group. NASA Langley PVS libraries. Available
at http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/pvslib.html.
Gerard J. Holzmann. Design and Validation of Computer Protocols. Prentice
Hall, 1991.

SRI International. PVS homepage. Available at http://pvs.csl.sri.com/.
SRI International. PVS language reference, version 2.4. Available at http:
//pvs.csl.sri.com/manuals.html, December 2001.

Steven D. Johnson. Formal methods in embedded design. Computer, pages
104-106, Novemeber 2003.

Philip Koopman, editor. Critical Embedded Automotive Networks, volume 22-4
of IEEE Micro. IEEE Computer Society, July/August 2002.

Hermann Kopetz. Real-Time Systems. Kluwer Academic Publishers, 1997.
Lamport, Shostak, and Pease. The Byzantine generals problem. ACM Trans-
actions on Programming Languages and Systems, 4:382—-401, July 1982.

Leslie Lamport. Composition: A way to make proofs harder. Lecture Notes in
Computer Science, 1536:402—423, 1998.

Jean-Claude Laprie. Dependability—its attributes, impairments and means. In
B. Randell, J.-C. Laprie, H. Kopetz, and B. Littlewood, editors, Predictability
Dependable Computing Systems, ESPRIT Basic Research Series, pages 3—24.
Springer, 1995.

Patrick Lincoln and John Rushby. The formal verification of an algorithm for
interactive consistency under a hybrid fault model. In Costas Courcoubetis,
editor, Computer-Aided Verification, CAV ’93, volume 697 of Lecture Notes in
Computer Science, pages 292-304, Elounda, Greece, June/July 1993. Springer-
Verlag.

Nancy A. Lynch. Distributed Algorithms. Morgan Kaufmann, 1996.

Thomas F. Melham. Abstraction mechanisms for hardware verification. In G.
Birtwistle and P.A. Subrahmanyam, editors, VLSI Specification, Verification,
and Synthesis, pages 129-157, Boston, 1988. Kluwer Academic Publishers.

14

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Lee Pike et al.

Thomas F. Melham. Higher Order Logic and Hardware Verification. Cambridge
Tracts in Theoretical Computer Science. Cambridge University Press, 1993.
Paul S. Miner, Mahyar Malekpour, and Wilfredo Torres-Pomales. Conceptual
design of a Reliable Optical BUS (ROBUS). In 21st AIAA/IEEE Digital Avion-
ics Systems Conference DASC, Irvine, CA, October 2002.

Sam Owre, John Rushby, Natarajan Shankar, and Friedrich von Henke. Formal
verification for fault-tolerant architectures: Prolegomena to the design of PVS.
IEEE Transactions on Software Engineering, 21(2):107-125, February 1995.
Holger Pfeifer. Formal Analysis of Fault-Tolerant Algorithms in the Time-
Triggered Architecture. PhD thesis, Universitdt Ulm, 2003. Available at
http://www.informatik.uni-ulm.de/ki/Papers/pfeifer-phd.html.

Lee Pike. PVS specifications and proofs for fault-tolerant distributed sys-
tem verification. Available at http://shemesh.larc.nasa.gov/fm/spider/
tphols2004/pvs.html, 2004.

Maxwell Rosenlicht. Introduction to Analysis. Dover Publications, Inc., 1968.
John Rushby. Formal methods and digital systems validation for airborne sys-
tems. Technical Report CR—4551, NASA, December 1993.

John Rushby. Systematic formal verification for fault-tolerant time-triggered al-
gorithms. IEEE Transactions on Software Engineering, 25(5):651-660, Septem-
ber/October 1999.

John Rushby. A comparison of bus architectures for safety-critical embedded
systems. Technical report, Computer Science Laboratory, SRI International,
Menlo Park, CA, September 2001. Available at http://www.csl.sri.com/
“rushby/abstracts/buscompare.

Philip Thambidurai and You-Keun Park. Interactive consistency with multiple
failure modes. In 7th Reliable Distributed Systems Symposium, pages 93-100,
October 1988.

